Partitioning of membrane-anchored DNA between coexisting lipid phases.
نویسندگان
چکیده
The partitioning of different cholesterol-modified single-stranded DNA molecules (chol-DNAs) between the domains of phase-separated lipid vesicles is investigated by laser-scanning confocal fluorescence microscopy. All chol-DNAs studied preferentially localized into the fluid phase of giant vesicles in liquid-solid phase coexistence (1:1 DLPC:DPPC, 1:1 DLPC:DMPE). Partitioning behavior of chol-DNAs into liquid-liquid phase-separated vesicles (DOPC/DPPC/cholesterol) was found to be less straightforward. Single-cholesterol-anchored DNA molecules partitioned roughly equally between coexisting domains, whereas chol-DNAs with two cholesterol anchors were seen to be enriched in the liquid-ordered domains with apparent surface concentrations up to double that of the liquid-disordered phase. Quantitative analysis of the fluorescence intensity of DNA between the two phases also revealed a weaker dependence of the apparent partitioning on the initial lipid composition of the vesicles. We rationalize these observations by proposing a simple partitioning model based on the conformational entropy of insertion of a cholesterol anchor into each phase.
منابع مشابه
Fluorescence probe partitioning between Lo/Ld phases in lipid membranes.
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers ...
متن کاملStructural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles.
The structural basis for organizational heterogeneity of lipids and proteins underlies fundamental questions about the plasma membrane of eukaryotic cells. A current hypothesis is the participation of liquid ordered (Lo) membrane domains (lipid rafts) in dynamic compartmentalization of membrane function, but it has been difficult to demonstrate the existence of these domains in live cells. Rece...
متن کاملLarge-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.
The membrane raft hypothesis postulates the existence of lipid bilayer membrane heterogeneities, or domains, supposed to be important for cellular function, including lateral sorting, signaling, and trafficking. Characterization of membrane lipid heterogeneities in live cells has been challenging in part because inhomogeneity has not usually been definable by optical microscopy. Model membrane ...
متن کاملPartitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local ...
متن کاملCalculating partition coefficients of chain anchors in liquid-ordered and liquid-disordered phases.
We calculate partition coefficients of various chain anchors in liquid-ordered and liquid-disordered phases utilizing a theoretical model of a bilayer membrane containing cholesterol, dipalmitoyl phosphatidylcholine, and dioleoylphosphatidylcholine. The partition coefficients are calculated as a function of chain length, degree of saturation, and temperature. Partitioning depends on the differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 42 شماره
صفحات -
تاریخ انتشار 2009